/* * AES Cipher function: encrypt 'input' with Rijndael algorithm * * takes byte-array 'input' (16 bytes) * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) * * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage * * returns byte-array encrypted value (16 bytes) */ AES = { /** Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1] */ Sbox : [ 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ], /** Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] */ Rcon : [ [0x00, 0x00, 0x00, 0x00], [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00] ], /** main Cipher function [§5.1] */ Cipher : function(input, w) { var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; state = this.AddRoundKey(state, w, 0, Nb); for (var round=1; round 6 && i%Nk == 4) { temp = this.SubWord(temp); } for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; } return w; }, /** apply SBox to 4-byte word w */ SubWord : function(w) { for (var i=0; i<4; i++) w[i] = this.Sbox[w[i]]; return w; }, /** rotate 4-byte word w left by one byte */ RotWord : function(w) { var tmp = w[0]; for (var i=0; i<3; i++) w[i] = w[i+1]; w[3] = tmp; return w; }, /** * Encrypt a text using AES encryption in Counter mode of operation * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf * * Unicode multi-byte character safe * * @param plaintext source text to be encrypted * @param password the password to use to generate a key * @param nBits number of bits to be used in the key (128, 192, or 256) * @return encrypted text */ encrypt : function(plaintext, password, nBits) { var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys plaintext = plaintext.encodeUTF8(); password = password.encodeUTF8(); //var t = new Date(); // timer // use AES itself to encrypt password to get cipher key (using plain password as source for key // expansion) - gives us well encrypted key var nBytes = nBits/8; // no bytes in key var pwBytes = new Array(nBytes); for (var i=0; i>> i*8) & 0xff; for (var i=0; i<4; i++) counterBlock[i+4] = nonceMs & 0xff; // and convert it to a string to go on the front of the ciphertext var ctrTxt = ''; for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); // generate key schedule - an expansion of the key into distinct Key Rounds for each round var keySchedule = this.KeyExpansion(key); var blockCount = Math.ceil(plaintext.length/blockSize); var ciphertxt = new Array(blockCount); // ciphertext as array of strings for (var b=0; b>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) var cipherCntr = this.Cipher(counterBlock, keySchedule); // -- encrypt counter block -- // block size is reduced on final block var blockLength = b>> c*8) & 0xff; for (var c=0; c<4; c++) counterBlock[15-c-4] = (((b+1)/0x100000000-1) >>> c*8) & 0xff; var cipherCntr = this.Cipher(counterBlock, keySchedule); // encrypt counter block var plaintxtByte = new Array(ciphertext[b].length); for (var i=0; i 0) { while (c++ < 3) { pad += '='; plain += '\0'; } } // note: doing padding here saves us doing special-case packing for trailing 1 or 2 chars for (c=0; c>18 & 0x3f; h2 = bits>>12 & 0x3f; h3 = bits>>6 & 0x3f; h4 = bits & 0x3f; // use hextets to index into b64 string e[c/3] = b64.charAt(h1) + b64.charAt(h2) + b64.charAt(h3) + b64.charAt(h4); } coded = e.join(''); // join() is far faster than repeated string concatenation // replace 'A's from padded nulls with '='s coded = coded.slice(0, coded.length-pad.length) + pad; return coded; } /** * Decode string from Base64, as defined by RFC 4648 [http://tools.ietf.org/html/rfc4648] * (instance method extending String object). As per RFC 4648, newlines are not catered for. * * @param utf8decode optional parameter, if set to true UTF8 string is decoded back to Unicode * after conversion from base64 * @return decoded string */ String.prototype.decodeBase64 = function(utf8decode) { utf8decode = (typeof utf8decode == 'undefined') ? false : utf8decode; var o1, o2, o3, h1, h2, h3, h4, bits, d=[], plain, coded; coded = utf8decode ? this.decodeUTF8() : this; for (var c=0; c>>16 & 0xff; o2 = bits>>>8 & 0xff; o3 = bits & 0xff; d[c/4] = String.fromCharCode(o1, o2, o3); // check for padding if (h4 == 0x40) d[c/4] = String.fromCharCode(o1, o2); if (h3 == 0x40) d[c/4] = String.fromCharCode(o1); } plain = d.join(''); // join() is far faster than repeated string concatenation return utf8decode ? plain.decodeUTF8() : plain; } /** * Encode multi-byte Unicode string into utf-8 multiple single-byte characters * (BMP / basic multilingual plane only) (instance method extending String object). * * Chars in range U+0080 - U+07FF are encoded in 2 chars, U+0800 - U+FFFF in 3 chars * * @return encoded string */ String.prototype.encodeUTF8 = function() { // use regular expressions & String.replace callback function for better efficiency // than procedural approaches var str = this.replace( /[\u0080-\u07ff]/g, // U+0080 - U+07FF => 2 bytes 110yyyyy, 10zzzzzz function(c) { var cc = c.charCodeAt(0); return String.fromCharCode(0xc0 | cc>>6, 0x80 | cc&0x3f); } ); str = str.replace( /[\u0800-\uffff]/g, // U+0800 - U+FFFF => 3 bytes 1110xxxx, 10yyyyyy, 10zzzzzz function(c) { var cc = c.charCodeAt(0); return String.fromCharCode(0xe0 | cc>>12, 0x80 | cc>>6&0x3F, 0x80 | cc&0x3f); } ); return str; } /** * Decode utf-8 encoded string back into multi-byte Unicode characters * (instance method extending String object). * * @return decoded string */ String.prototype.decodeUTF8 = function() { var str = this.replace( /[\u00c0-\u00df][\u0080-\u00bf]/g, // 2-byte chars function(c) { // (note parentheses for precence) var cc = (c.charCodeAt(0)&0x1f)<<6 | c.charCodeAt(1)&0x3f; return String.fromCharCode(cc); } ); str = str.replace( /[\u00e0-\u00ef][\u0080-\u00bf][\u0080-\u00bf]/g, // 3-byte chars function(c) { // (note parentheses for precence) var cc = ((c.charCodeAt(0)&0x0f)<<12) | ((c.charCodeAt(1)&0x3f)<<6) | ( c.charCodeAt(2)&0x3f); return String.fromCharCode(cc); } ); return str; }